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The problem of gas motion in a tube closed at one end and driven at the other by an 
oscillating piston is studied theoretically. When the piston vibrates with a finite 
amplitude at the first acoustic resonance frequency, periodic shock waves are 
generated, travelling back and forth in the tube. A perturbation method, based on a 
small Mach number, M and a global mass conservation condition, is employed to 
formulate a solution of the problem in the form of two standing waves separated by 
a jump (shock front). By expanding the equations of motion in a series of a small 
parameter E = M”’, all hydrodynamic properties are predicted with an accuracy to 
second-order terms, i.e. to 2. It is found that the first-order solution coincides with the 
previous theories of Betchov (1958) and Chester (1964), while additional terms predict 
a non-homogeneous time-averaged pressure along the tube. This prediction compares 
favourably with experimental results from the literature. The importance of the 
phenomenon is discussed in relation to different transport processes in resonance tubes. 

1. Introduction 
The present paper considers gas oscillations produced by an oscillating piston at one 

end of a closed tube. Experimental evidence (Saenger & Hadson 1960) shows that in 
a closed tube, a piston vibrating in a narrow frequency band around a resonance 
frequency can amplify the gas oscillations to the extent that the shock waves develop. 
The latter travel back and forth between the piston surface and the rigid end. In order 
to explain this observation, Betchov (1958) and Saenger & Hudson (1960) constructed 
theoretical models based on the existence of a propagating shock discontinuity. 

Saenger & Hudson’s solution is flawed by the fact that the amplitude of gas 
oscillations becomes infinite in the absence of shear viscosity and heat conduction. 
Betchov was the first to show that even if shear viscosity and heat conduction are 
negligible, nonlinear cumulative effects lead to finite gas oscillations in closed tubes. He 
found that for small displacements of the piston an oscillatory flow consists of two 
simple waves, having the same frequency, separated by a jump. This solution is 
interesting in that although the oscillations remain small the velocity in the gas is much 
higher than that of the piston, yet still much smaller than the speed of sound. Betchov 
also discusses the modifying effect of wall friction on his solution, assuming, as did 
Saenger & Hudson (19601, that this effect is equivalent to a body force proportional to 
the velocity. In both references it is suggested that wall friction could significantly 
modify the solution. 

Chester (1964) has developed a consistent theory of gas oscillations in a closed tube 
near resonance, predicting the appearance and strength of the shock waves. He used 
a combination of the method of characteristics and a straightforward expansion, to 
obtain a solution accounting for compressive and shear viscosity in the boundary layer 
near the tube wall. For typical laboratory conditions the effect of compressive viscosity 
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was shown to be small in contrast to that of shear viscosity. Chester's theory is more 
general in the sense that shock waves appear as a natural outcome of the solution when 
the piston frequency approaches one of the resonant frequencies. Outside these narrow 
resonant bands, the solution is continuous but not purely harmonic. This work was 
further extended by Keller (1976) to include the effect of boundary-layer friction. Other 
related studies on closed resonance tubes were reported by Cruikshank (1 973, Merkli 
& Thomann (1975), Zaripov & Ilhamov (1976), Ochmann (1985) and Ockendon et al. 
(1993). 

It is noted that, with exception of Ochmann (1985), all the early investigators 
consider only quasi-steady oscillations. Ochmann (1 985) studied transient effects in 
closed resonance tubes, exited by distributed forces, employing the method of 
averaging to describe the slowly varying wave amplitude. More recently, Wang & 
Kassoy (1995) have investigated the piston-driven resonances in a gas column, subject 
to a variety of boundary conditions. In order to study the evolution of the wave field 
in a cylinder subject to small-amplitude piston oscillations, they developed a 
mathematical technique that combines a formal multi-scale perturbation procedure 
with Fourier series expansions. This technique, which is based on an initial-boundary- 
value formulation, has the advantage of being fully applicable for treatment of the 
nonlinear evolution to the limit cycle for both closed and open end conditions. At the 
steady-state limit both theories approach that of Chester. 

Several attempts have been made to compare experimental measurements of the 
shape of the pressure wave with theoretical predictions of Chester. The most thorough 
comparison was performed by Cruikshank ( 1972), who showed that Chester's theory 
is valid only for a limited range of driving amplitudes. For these amplitudes 
experimental and theoretical waveforms are in good quantitative agreement. For 
sufficiently small values of the amplitude parameter E ,  which is proportional to the 
square root of the Mach number, M1", characterizing the ratio of gas velocity 
immediately on the piston and the speed of sound, the motion of the gas is shockless 
or is accompanied by weak shock waves of the order of 2. For larger values of E ,  

experiments revealed amplitude discrepancies, despite the general shape similarities. 
Several theoretical papers investigate this problem for a range of driving amplitudes 

where Chester's theory is invalid. These papers consider mostly timescales long 
compared with the acoustic timescale (Klein & Peters 1988; Wang & Kassoy, 1990; 
and studies cited therein). In these studies the formation of a weak shock wave for non- 
resonant frequencies from an initially continuous compression wave were investigated 
by different multi-scale perturbation methods. The analyses were limited only to waves, 
whose amplitudes are comparable with the small Mach number. 

The present one-dimensional study is concerned with the explicit effects of gas 
dynamic processes on equilibrium compression and expansion. In this sense the effects 
of non-planar flow (e.g. vortices) are not addressed, although they inevitably occur in 
realistic situations. The initial-value problem of the interaction of a sound wave with 
vorticity and entropy waves was considered by Majda & Rosales (1984), and Majda, 
Rosales & Shonbeck (1988). The new results of resonant acoustics obtained include 
substantial, almost periodic exchange of energy between the nonlinear sound waves, 
the existence of the smooth periodic wavetrains, and the role of such smooth wave 
patterns in eliminating or suppressing the strong temporal decay of sawtooth profile 
solutions. They found that smooth initial data with sufficiently small amplitudes never 
develop shocks throughout a long time interval. 

Our work considers the externally driven gas column as in resonance studies 
conducted by Betchov (1958) and Chester (1 9641, when limiting-cycle oscillations are 
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accompanied by travelling shock waves of the order of 6. These oscillations are 
characterized by a balance between energy input by the driving piston and internal 
dissipation by the shock waves. Entropy changes induced by the O(E) shock, which 
occur at the O(e3) level, have no influence on the process for times less than T/A, where 
T is the period of external oscillations. This restriction is standard for limiting-cycle 
problems. For the problem of a shock wave of order M entropy perturbation analysis 
was performed by Klein & Peters (1988). 

In the works of Galiev et al. (1970) and Zaripov & Ilhamov (1976) different 
nonlinear solutions are obtained and some experiments performed for amplitudes 
larger than those of Chester’s theory. For example, it follows from the experimental 
data of Zaripov & Ilhamov that the time-averaged pressure at the plug is larger than 
that in the gas at the initial state (see also Saenger & Hudson 1960). Still, there are 
experimental effects which until now had no theoretical explanation. For instance, the 
experiments of Merkli & Thomann (1975) show that there is a variation of the time- 
averaged pressure along the tube. 

The present work considers the theory of one-dimensional, nonlinear oscillations in 
an inviscid gas inside a closed tube. The theory neither describes resonant wave 
amplifications nor formations of shock waves. It is restricted to a time periodic steady 
state and is valid as long as entropy perturbations and viscous boundary-layer effects 
are neglected. These restrictions make it possible to consider amplified periodic gas 
oscillations which occur over many cycles, when the gas ‘forgets ’ its initial conditions. 
An analytical solution at resonance frequency is obtained in terms of asymptotic 
expansions in the small parameter e. The first term of the asymptotic expansion 
coincides with the solution of Betchov, while the higher-order terms account for the 
effects of average pressure increase at the plug, and non-homogeneous pressure 
distribution along the tube. 

2. Basic equations 
2.1. Problem formulation 

We consider one-dimensional inviscid motion of an ideal gas, for which the equations 
of motion are: 

au  au l a p  aP au aP 
-+u-+-- = 0, -+p-+u- = 0, 
at a.u p ax  at ax ax (1 a, b) 

where P is given by the following constitutive equation: 

P = ApY, (2) 
here y is the adiabatic exponent and A is constant for an isentropic process. We neglect 
the change of entropy during the considered process. 

Let po and C,  be the initial gas density and speed of sound, respectively, with the 
general relations 

= yApi-1. ( 3 )  

We consider a long tube closed at one end (x = 0) with an oscillating piston at the 
other end (x = L) .  The motion of the piston is sinusoidal with a frequency w and a 
velocity amplitude u,. The boundary conditions may be written in the following form : 

u(x,  t )  = 0 at x = 0, (4a) 

u(x, t )  = .t,(t) at x = x,(t), (4 b)  
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where x,(t), .%,(t) are the coordinate and velocity of the piston, respectively, 

(5a, b)  
U 

0 
x,(t) = L + 0 sin (wt), ip( t )  = uo cos (wt). 

Since the problem includes a shock wave, a condition at the shock front is needed. 
For the inviscid perfect gas the jump conditions may be written in the following 
Rankine-Hugoniot form : 

pt(U-uu,) = pr(u-ur), (6 4 
(6 b) 

where indexes 1, r refer to the respective values at the left-hand and right-hand sides of 
the shock front X u  moving with speed U (see figure 1). 

Usually the jump conditions define the position of the shock front. Here, however, 
this is not the case, and an additional condition is needed. For example, Galiev, 
Ilhamov & Sadykov (1970) used the condition of mass conservation at any cross- 
section of the tube. In the present study we use the global condition of mass 
conservation within the tube. In our notation this condition may be written as follows 

pl(u- ~ 1 ) '  + pl = pr(u- Ur)' + f'r, 

J o  

2.2. Problem reduction 
Let us introduce the following dimensionless variables and functions 

2 = xw/c,, ? = tw, 

a = "/C , ,  f3 = p/po. 

Using these dimensionless values, ( l ) ,  (2) may be written in the dimensionless form as 
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and the boundary conditions ( 4 4  b) become 

Here ZJf), a,(?) are the dimensionless coordinate and speed of piston, respectively, 

(1 1 a, b) 

where L= L.w/C, is the dimensionless length of the tube, while the dimensionless 
parameter e is the square root of the Mach number, 2 = uo/Co = M .  

Restricting the analysis to the case of small e, i.e. e < 1, we seek a solution of (9a, b) 
in the form of the following expansions 

a,(?) = Z+ c2 sin i, 2,(t") = e2 cos 2, 

Substitution of expansions (12a, b)  into (9 a, b)  yields : 

First approximation 
a p  ap(1) a p )  
- +y=Q, - +- = 0, a i  ax a? an 

Second approximation 

The expansion of the boundary conditions given by ( 1  0) and ( 1  1) yields : 

Second approximation 

U"y, = 0, qL = cos 2. (16a7 b) 

Using the constitutive equation (2) together with relations (8), the jump conditions 

(17a) 

given by (6) may be written in the dimensionless form as 

p " , ( f ,  f U @ ) ) ( f i ( f ) - - & ( f ,  gu(f))) = fir(?, gu(?))(fi(f)-z?r(?, TJf))) ,  

Because the Mach number M ,  and/or the parameter e, are small, the hypothesis of a 
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FIGURE 2 .  The oscillating shock wave. 

weak shock wave is valid and, hence, the dimensionless shock wave speed, o(f) and the 
coordinate of the shock front, FJf) may be expanded in the following series: 

6(?) = 6(O)(t")+e6'1)(?)+t:26(2)(?)+ O(E3), ( 1 8 4  
2Jf) = X71t))(l)+eg~'(f)+f',2)(1)+ O(e3), (W 

where 

and ocO)(f) = 1 for a shock wave travelling from left to right (see figure 2) and 
o ( O ' ( f )  = - 1 for a shock wave travelling from the right-hand side to the left-hand side. 
Substitution of series (1 8 a, b), (12) into the jump conditions (1 7) and expansion in a 
series with respect the small parameter t: yields: 

First approximation 

o ( O ) ( f ) p y ( z ,  q- zp(f, X) = 6 ( O y f ) p y ( 1 ,  ?) - Sl"(f, -f)l&pp(F), 

u - ( I )  ( t )  - = i ( y -  l ) ( p ~ . l ) ( f , ~ f ) + ~ ~ l ) ( f , ~ f ) )  6(o)(~)+~(~~)(f,~~)+~~l)(f,~~))l~=~~~'(~), 

(19) 

Second approximation 

(20 4 

Note that equations (19), (20) are written at the zeroth approximation, g1t))(f) of the 
shock front gu(f). We will show later that the first-order solution turns (19) into an 
identity for any shock front position. Therefore, an additional condition for the 
determination of the shock front position is need. For this purpose, the condition of 
mass conservation (7) is used. 

Normalized mass conserwtion condition 

conservation condition (7 )  may be written in dimensionless form 
Using expansion of the gas density (12a) together with relations (X) ,  the mass 
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After substitution of the equation of motion for the piston (1 1 a )  and of the expansion 
of the shock front (18a) into the above mass conservation condition one can expand 
it in a series with respect to the small parameter e .  The density in the expansion of (12a) 
is normalized by the initial density po (see equation (8)) in such a way that all the mass 
of the gas is included in the zeroth-order term. Therefore, each perturbation of the 
homogeneous (zeroth-order) solution should have no contribution to the total mass of 
the gas. As a result, the mass normalization condition for densities iP), $') is obtained 
as : 

(21 b) 

Equation (21 a)  does not take into account the oscillation of the piston and the initial 
density of the gas. This equation shows that the total area of the left-hand side and 
right-hand side densities (separated by a zeroth-order approximation of the shock 
front) is zero (see figure 1). Equation (21 b) includes a term which describes the motion 
of the piston (first term in the left-hand side) and the contribution of the first-order 
terms of the solution (see the right-hand side), which reflect nonlinearity of the 
problem. 

The problem formulated above is valid for a band of frequencies close to the first 
resonance frequency. We consider the resonance case, when the period of natural 
oscillations of the first-order problem, 2L", is equal to the period of the oscillations of 
the piston, 2n, i.e., - 

L = 7c. (22) 

3. First-order solution 
3.1. Mathematical model 

The general solution of the problem includes a discontinuity. We look for a solution 
comprised of two continuous parts, i.e. left-hand side and right-hand side parts 
separated by a shock front (see figure 1). In the first approximation each of the parts 
should satisfy equations (13 a,  b). Using indices 1, r for the left-hand side and right-hand 
side parts (waves), the equations of motion become: 

Left-hand side wave 

Right-hand side wave 

(23 a, b) 

In this notation the boundary conditions (15) are replaced by 

(24a, b) -(I) $1)- - - 0 

One can see, that the motion of the piston is removed from the boundary conditions 
(24a, b). Consequently, in the first approximation the problem is reduced to the 

U L l f = o  = 0, r l r = L  - ' 
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problem of free oscillation of an inviscid gas bounded by two rigid walls. In the 
following section we consider the latter problem assuming that the solution may be 
presented in the form of two standing waves separated by a jump. This form of the 
solution was first presented by Betchov (1958). 

3.2. Analytical solution 
We look for a solution of the first-order problem represented by (23) and conditions 
(24) in Betchov's form, i.e., 

where A,, A,, a,, a,, $,, $, are constants to be calculated. Solution (25a, b) satisfies 
(23a, b) and condition (24a). Solution (26a, b) satisfies (23 c, d )  and condition (24b). 

At any time t the left-hand standing wave given by solution (25) is placed between 
the left-hand rigid wall and the shock front, while the right-hand standing wave given 
by solution (26) is placed between the right-hand rigid wall and the shock front 
(see figure 1). Conditions at the shock front are given by (19). Substitution of solution 
(25a, b), (26a,b) into condition (19) yields 

(27) A,sin01, [X+(f -@J i!7(0)(f)] = A,sin a,[f-L"+(?-$,) $')(f)], 

where X = $:)(t") is the shock front position, and @O) = @ O ) ( f )  is the shock front 
velocity in the zeroth approximation. Equation (27) yields 

a, = a, = 01 (say), (28 a c )  

One can see that relations (28) turn (27) into an identity for all 2, not only for 
X = $:)(f). It means that the first-order solution also satisfies the jump condition (19) 
for all 3. Therefore, the last terms in the jump condition (20b) vanish. 

A ,  = A, = A (say), $, = $r + L"fi(O). 

3.3. Periodical oscillations 
Equation (27) together with relations (28) does not determine the shock front position 
gu = gu(f). For this purpose we turn to the mass normalization condition (21 a). After 
the substitution of relations (25b), (26b), (28a-c) into the latter condition and 
integration we obtain : 

sin a(i- sin a [ . Q ) ( f )  - L"] -sin a(?- $,I sin a [ 2 3 f ) l  = 0. (29) 

It follows from (1 8 a-c) that in the zeroth approximation the speed of the shock front 
is merely equal to k 1 and the trajectories of the shock front follow a zigzag path. This 
path may be characterized by parameters $,, $, which also characterize solution (25) 
and (26). According to this solution, parameters $1, $, determine the times when the 
shock wave is reflected from the walls. It may be shown that these parameters are 
simply connected through a reflection time from the plug. At the time when the shock 
wave reflects from the plug, equation (29) reduces to 

sin a(f- $,) sin aL" = 0, ( 3 0 4  

sin a(f- sin aZ = 0. ( 3 0 4  

while for the reflection time from the wall 1 = L", equation (29) becomes 
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In the following section it is shown that 

sinaZ =I= 0. 

Bearing in mind this condition and equations (30a,b), the physical sense of the 
parameters may be explained as follows : parameters $1, $r determine the times when 
the shock wave reflects from the walls -f = L", 0, respectively, i.e., 

A?f)($.,) = 2, Lq)($r) = 0. ( 3 2 4  b) 

This may also be seen directly from (25b) and (26b) and from the normalization 
condition (21 a). For example, at the instant f = $l according to condition (32a) the 
right-hand side solution (26b) does not affect the condition (21 a) .  On the other hand, 
at that time the left-hand side density is equal to zero. Under these conditions of total 
mass conservation, all integrals in equation (21a) equal zero and, hence, the global 
mass conservation condition turns into identity. 

Now we consider the shock-wave oscillation between the rigid walls X = 0, L" on the 
plane -ff (see figure 2). The shock front trajectory is comprised of straight segments 
inclined at angles f i x  which corresponds in the zeroth approximation to the shock 
waves propagating with speeds equal to f 1, respectively. Each of the two straight 
segments together with the lines X = 0, L" comprise a triangle. The triangles lying on the 
line .f = 0 correspond to the left-hand side waves, while those adjacent to the line -f = Z 
correspond to the right-hand side solution. Within every triangle area the concomitant 
values k1, $r are constants; where $l is the reflection time from the wall X = L", while 
@r is the reflection time from the wall R = 0. According to relations (28 c), (32a, b), each 
successive reflection occur after the same period L". Bearing in mind these 
considerations, solution (25) ,  (26) shows that the oscillations of the shock wave are 
periodical with the period 2L". Therefore, all values $ l ,$v  may be expressed via the 
time f, (see figure 2), where 

k*(t",,, = 2, (33) 

which is enough to describe the oscillation during the period 22. 

(25) ,  (26) and (28)  may be rewritten in the following form: 
Considering the interval II-t,l < L" and setting z,k1 = t",, (see figure 2), solutions 

( 3 4 4  

(34 b) 
( 3 5 4  
(35b) 

."I1) = A sin (a?) cos a(?- f,), 
# )  = - A  cos (a,?) sin a( I -  ?,), 
6:) = A sin a ( ~  - 2) cos a(?- f, + 0(0)2>, 
@?) = - A  cos a(-f - L") sin a(?- 2, + 0(0)2), 

The speed of the shock front in the above expressions is 

Substitution of (36) into (18c) with i = 0 and integration with initial condition (33) 
yields the trajectory of the shock front in the zeroth approximation: 

Xf)( t " )  = f ~ ( O ) ( T )  d7 = (?- I,) $ O ) (  t") + L". (37) 
t 0  

We have shown in this section that the first-order solution (25) and (26) describes 
free periodic oscillations with a period 2L". This solution contains three unknown 
parameters, A ,  I,, a. These parameters will now be determined from the condition of 
existence of the second-order periodic solution. 
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4. Second-order approximation of the problem 
4.1, Mathematical model 

Now we derive the governing equation for the second approximation of the left-hand 
side and right-hand side waves. Substitution of the first-order solution ( 3 5 4  b)  of the 
right-hand side wave into the right-hand sides of equations (14a, b) yields: 

where 

The first-order solution for the left-hand side wave (34a, b) together with (14a, 6) yield 
the governing equations for the left-hand side motion in the second approximation, 

2, = 2 4 2 4 ,  2, = 2a(t"-io+ 8'"L). (38 c, 4 

where 
? f l  = 2a.t tl = 2a(f-To). (39 c, 4 

The constants R,, C,, B,, are 

R o - 8 ( 3 - y ) A 2 ,  -1 C , = - i ( y - 1 ) A 2 ,  B,=$A2. (40 a-c) 

The boundary conditions (16a, b )  expressed in terms of left-hand side and right- 

(4 1 a, b) 

Equations (381, (39) together with the boundary conditions (41 a, b), the jump 
condition (20 b)  and mass normalization condition (2 1 b) determine the second 
approximation. This approximation is discussed in more detail in the following 
sections. 

4.2. A particuIar solution 
Using the following simplified notation : 

hand side waves are 
E ( 2 )  = 0 4 2 )  

k o  , u,li.=i = cos f. 

2, x, t", - t ,  p, - (2)  (x,, - 1,) - pp(x, t) ,  zy(2,, I,) - u,(x, t ) ,  

-fl + x, t; - t ,  /y(?,, i,) +pp(x, t ) ,  U"y'(x,, i,) + U p ( &  t ) ,  

(38 a, b )  and (39 a, b) may be presented as 

c?u,(x, 1)  C?p,(x, t )  
= - R, sin x + C, sin xcos t ,  

a.x 

Sp,(x, t )  c?u,(x, I )  + 

+ 
at 

= B,, sin t cos s. a s  at 

A particular solution of the latter system is 

p J t ,  x) = R, cos x + R,(s) cos t ,  u,(t, i) = V,(x) sin t ,  (43 a, b) 
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where 
UJx) = +(C, + B,) sin .‘c + f(Bo - C,) (x + k )  cos x, 

R,(x) = - i(C, + B,) cos x - f (  B, - C,) (x + k)  sin x, 
(44 a) 

(44 b)  

with k being a constant to be determined. 
Any solution of (38) and (39) may be presented as a sum of a particular solution and 

a general solution of the homogeneous parts of these equations. The standing-wave- 
type solution of the homogeneous parts of (38) and (39), which are identical to (23), 
is 

(45a, b) 

where C, is an arbitrary constant. This solution fails to satisfy the condition (41 b)  at 
the piston. This condition can only be satisfied by the particular solution (43 a, b) and 
( 4 4 4  b), which holds for the right-hand side wave. It can be shown that the particular 
solution (44) may satisfy the boundary conditions of the problem by a proper choice 
of the still undetermined constants. Particularly, this solution gives the following 
expression for the speed of the right-hand side wave: 

ur)(I, ,  d,) = sin I, [t(C, + B,) sin d, + +(Bo - C,) (a, + k,) cos .?,I, 
where k, is an unknown constant. Substitution of this expression together with (39c, d )  
into (41 b )  yields 

(46) 

It follows from this equation that 

a = f, I, =;n, f(Bo - C,) k, = 1. ( 4 7 4  c)  

u“, = C, cos isin -f, pa = - C, sin icos R, 

f ( ~ ,  - c,) k, sin 2a(f-  i, + nfi(’)) = cos i. 

Note that relations (22) and (47a) provide a proof of assumption (31). 

coordinate of the shock front in the zeroth approximation 
Expressions (36), (37), (22) and (47b) completely determine the speed and the 

X E ) ( l )  = ( I -  in) fi(O)( i) + n. (48 b)  

Now we calculate the first-order terms in expansions (1 2a, b )  and (1 8 b). Bearing in 
mind relations (22) and (48a,b) we rewrite the solution given by expressions (34a, b )  
and (35a, b)  in the following form: 

( 4 9 ~  b) 

(49G 4 
Substitution of expressions (48) and (49) into condition (20a) leads to the expression 
for the shock wave speed: 

(50) 

- a;” = - p, (1) U‘” = A sin ($2) cos (if- in), 

~ p )  = -jjj1) fi(0) = ~ f i ( 0 )  cos (fa) sin (+f-+n). 

- 
U‘l’ = i ( 3  - y )  A sin 1. 

4.3. Final results 
The second-order approximation of the left-hand side solution for the velocity and the 
density is defined by relations (43a,b),  (44a,b), (39c, d ) ,  (47a,b) and a condition at the 
plug (41 a) : 

u”fJ = - G(C, + B,) sin d + i(Bo - C,) (-2, + k, )  cos d] cos i, (51  a )  
bjz) = R,cos.f-[~(Co+B,)cos~f+f(B,-Co)(.2+k,)sin.2]sinI, (51  b) 
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k,  = 0. 

The second-order approximation of the right-hand side velocity and density solutions 
is defined by relations (43 a, b), (44a, b),  (38 c, d )  and (47a, b) 

(52 4 u“?) = - [z(C, 1 + B,) sin .f + :(Bo - C,) (x, - 7t + k,) cos 21 cos f, 
p y )  = - R, cos x- [i(C, + B,) cos x’ + +(I?,, - C,) (2 - n + k,) sin x’] sin I, (52b) 

with an accuracy to within a constant k,. 
The unknown constant k, may be calculated from the condition on the shock front 

(206). For this purpose we substitute expressions (48k(52) into condition (206) leading 
to the following equation : 

+(B, - C,) (k ,  - n) I!?’) sin (2:) = 0. (53)  

k, = 7t. (54) 

Combining this with (47c) one can calculate the constant k, 

Simple calculations using expressions (40b, c), (47 c )  and (54) also yield the 
parameter A .  

This parameter completely determines the first-order solution (49) and (50). 

and (55)  may finally be written as: 
The second-order solution which is given by relations ( 5 1  a, c), (52a, b), (54), (4Ou-c) 

p”?)+4Bcos.f = p ” ~ 2 ) - 4 B ~ ~ ~ . f  = - sin?= ,6(2) (say), 

(574 4 
1 

where 

B =  3-Y 
2n(y + 1).  

It is seen from expressions (56) and (57), that in the second approximation the gas 
speed is a continuous function, while the expression for its density includes continuous 
and discontinuous parts. Let us clarify the physical sense of these parts. Using the 
second-order solution given by expressions (57a, b) together with the shock wave 
coordinate defined by relation (48 b) one can calculate: 

sin I+  [ ,5(2)(?, 2) d J  = 0, ( 5 9 4  

4Bcos.fd.f = ~ B ~ ~ ( ” C O S  I. ( 5 9 4  r 2;’ (i) R p ( n  
~ B C O S  x’ dx’ - s,, 

The sum of the left-hand sides of expressions (59a) and (59b) represents the left-hand 
side of (21 b). Expression (59a) merely states that the continuous part of the solution 
describes a density oscillation caused by the piston. The discontinuous part of the 
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FIGURE 3. The time averaging procedure. 

second-order solution is presented by expression (59 b). It is due to the nonlinear terms 
appearing in the right-hand side of (21 b). 

The right-hand side of (21 b) is a product of the density jump at the shock front in 
the zeroth approximation, A’:)(?), and the first approximation of the shock front 
coordinate Xlf)(?). Using expressions (48 b) and (49) we obtain an expression for the 
density jump : 

p1 -(1) ( t , X ,  - “(0) (t))-P”y(f,Y;’(f)) - = -AC‘O’. 

This expression merely states that the density jump is equal to - A  on the shock wave 
propagating from the left to the right and A on the shock wave propagating from the 
right to the left. 

Substitution of expressions (59a, b) into the mass normalization condition (21 b )  
yields the first approximation of the shock front coordinate as: 

X t ) ( f )  = -8(;)cosf. 

This expression together with (37) determine the shock-front coordinate (18b) up to the 
terms of second order with respect to the small parameter c. Figure 3 shows by bold 
curves the first-order approximation of the shock-front trajectory while the zeroth 
approximation is shown by dashed lines. One can see that the contribution of the first- 
order approximation (61) distorts the shock-wave trajectory but does not change the 
time of the reflection of the shock front which is determined by the zeroth-order 
solution. 

5 .  Discussion 
The form of the present solution for the speed and density of the gas (34) and for 

the shock speed (36), (50) was first proposed by Betchov (1958). However, his study did 
not consider the reflection of the shock wave from the piston or the plug. Betchov 
considered the continuous parts of the solution for the left-hand side and right-hand 
side waves and did not calculate the magnitude of the jump as given by the parameter 
A .  The complete form of the first-order solution (49) and (55) was obtained by Chester 
(1964). In the present study we have augmented the solution by the second-order terms 
(56a, b)  and (57a, b). Below, we discuss the effects of these new additional terms. 

Some idea of the influence of the nonlinear terms can be obtained from the data 
given by Saenger & Hudson (1960) for a tube of length L = 67 in., a piston amplitude 
I = 0.125 in., and the resultant first resonance frequencyf, = 100.6 Hz. From these data 
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FIGURE 4. Pressure oscillations at the closed end of the tube. Dashed line corresponds to the 
theory of Chester, continuous line corresponds to the present theory. 

one finds F = 0.077. Setting y = 1.4 and using (55 )  and (57) one obtains for air the 
following values of the parameters: A = 1.46, B = 0.106. Chester's solution for these 
conditions, as given by expressions (49 b, d )  and the present nonlinear solution given 
by expressions ( 5 7 4  b) and (58 )  may be substituted into equation (12c) to obtain the 
pressure oscillations during the experiment. Comparison of the results of these two 
solutions enables us to assess the effect of the additional terms on the pressure, as 
shown in figure 4. One can see that for these experimental conditions the deviation of 
Chester's theory from ours does not exceed 5 % .  Moreover, both these theories give 
the same pressure change at the closed end of the resonance tube, namely about of 
23.5 cm Hg. This value differs from the experimental data of Saenger & Hudson 
(1960) by about 8 %. 

However, there are two important differences between Chester's theory and ours. 
First, Chester's theory predicts the average gas pressure to be equal to the initial 
pressure, while the present theory predicts an increase in the time averaged pressure at 
the plug owing to the oscillations of the piston. This result agrees qualitatively with the 
experimental data of Saenger & Hudson (1960), as shown in their figure 1 (d ) ,  Zaripov 
& Ilhamov (1976) as shown in their figure 7 and Merkli & Thomann (1975), as shown in 
their figure 6(b). Secondly, the present theory predicts that there exists an average 
pressure gradient along the tube. This is confirmed by the data presented in figure 6(b) 
of Merkli & Thomann (1975). 

In order to verify these two effects we average the solution obtained. Using 
expressions (12a, c) the time averaged pressure and density disturbances of the 
quiescent gas are obtained 

(62 4 APaL, = FFL:! + F',~Z!, 

where the time averaging scheme may be expressed via the left-hand side and right- 
hand side solutions as follows: 

3 4 2  t ,W *(a 
[(a, ?) d I  = /-n/2 &(?, I )  d?+ I,,, &(2, I )  dZ+ rl2 &(2, i) d?, (63) 

t , ( f )  
[a ,  = j-n/2 

where [(Z, 2) is an arbitrary function of 2 , 2 ;  and t l(2),  t z (2 )  are successive times of shock 
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FIGURE 5 .  The time averaged pressure and density distributions 

wave passage through the section with the coordinate .f (see figure 3) .  During one 
oscillation period the shock wave passes twice through any section of the tube. The 
times t,(-f), t,($ of the shock wave passage are the solutions of the equation 

f,(l(X)) = 2. (64) 

The left-hand side of the latter equation is determined by expressions (18b),  (48b) and 
(61 )  with an accuracy up to the first order with respect to the small parameter E .  With 
the same accuracy asymptotic solutions of (64) are given by 

where the first two terms on the left-hand side correspond to the zeroth approximation 
and the last term to the first approximation. Taking these expressions together with the 
first- and second-order solutions for density, given by expressions (49 b, d ) ,  and 
(57 a, b), respectively, and using the definition (63) one can calculate : 

(660 ,  b )  p:: = - 16B c sin 2, ,5rJ = 8B(n - 2.f) cos 1, 

[ ( f i ( 1 ) ) 2 ] a L ,  = A2[(n:--.f)cos.f+~sin2(~.f)-sin.f], (66 c) 

where A and B are given by (55 )  and (58), respectively. Substitution of (66a, b) into 
(62a, b) yields the average density distribution, while a proper combination of 
expressions (660-c) yields the average pressure distribution. For the special case of the 
tube used by Merkli & Thomann (1975) these two distributions are presented in figure 
5.  As can be seen, the present theory predicts a minimum average density as well as a 
minimum average pressure around the middle section of the tube. The latter prediction 
agrees with the experimental data of Merkli & Thomann (1973,  as seen in their figure 
6 (b). 

We now compare the analytical result for the averaged pressure, given by (62b) and 
(66a-c), with the measurements of Saenger & Hudson (1960). They obtained at the 
closed end of the tube an average pressure of 18.5 cm H,O. For the same conditions, 
the present theory yields APat, = 4 7 2  Po = 32.8 cm H,O with Po being the atmospheric 
pressure. The difference between theoretical and experimental results of the averaged 
pressure may be explained by: (i) rather low accuracy of the data of Saenger & 
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Hudson; (ii) the fact that the theory neglects gas viscosity, which reduces the shock 
waves strength and, hence, all effects connected with the waves; (iii) small changes of 
the resonant frequency caused by entropy variations during the experiment. 

Indeed, for the experimental conditions of Saenger & Hudson (1960) given in their 
paper,f, - 0.01 s-’, E - 0.077, the characteristic timescale for O(s)-entropy changes is 
just about E - ~ / ”  z 0.6 s. It is possible that the experiment has been run at least as long 
as this. On the other hand, the inviscid solution predicts pressure changes at the closed 
end of the tube of about 23.5 cm Hg while Saenger & Hudson (1960) measured 
21.6 cm Hg. The error of the inviscid solution (1.9 cm Hg which is about 25 cm H,O) 
was attributed by Chester (1964) to the shear viscosity. This error is of the same order 
as the difference in the average pressure between present theory and the experimental 
data. 

The above analysis shows that nonlinear terms lead to pressure gradients in resonant 
tubes, although viscosity and entropy effects may modify the magnitude of this 
phenomenon. 

6. Conclusions 
The existence of a pressure minimum within the tube was experimentally confirmed 

by Merkli & Thomann (1975) for the case of a shockless piston oscillation. When the 
frequency of the piston oscillation,f, is far from the resonance frequency,f, the spatial 
inhomogeneous terms are of order M 2  and much smaller than the amplitude of the 
pressure oscillation, which is of order M .  In the case of resonance oscillations, 
considered in the present study, the amplitude of the pressure oscillation is of order 
M1”, while the spatial inhomogeneous terms are of order M (see expressions (62) and 
(66)). Hence, in the resonance case the pressure gradient is significantly larger than in 
the case of regular acoustic oscillations. This effect is of considerable scientific and 
engineering interest, since it should intensify all transport processes inside the 
oscillating tube. For example, we expect that this effect can be used to enhance small 
particle drift under the influence of acoustic waves. 
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